Close tonight: HW 13.3 Entry Task: MR/MC graphs are given. Assume Fixed Cost is $\$ 15,000$.
So $T C(0)=15$ thousand dollars.

Use the graph to estimate:
(a) Maximum $T R=$??
(b) Profit at $x=2$ thousand Trivets.
(c) Maximum Profit = ??
(d) Challenge question: At what quantities is profit equal to zero?

Example: At time t = 0 min, a Red and Green balloon are next to each other at 60 feet. The rate of ascent of each balloon is given by

$$
\begin{array}{ll}
R^{\prime}(t)=-\frac{1}{2} t^{2}+4 t & \text { feet } / \mathrm{min} \\
G^{\prime}(t)=t^{3 / 2} & \text { feet } / \mathrm{min}
\end{array}
$$

These graphs intersect at $\mathrm{t}=4$.

What do the following represent?
a. Area under $R^{\prime}(t)$ from 0 to 4.
b. Area under $G^{\prime}(t)$ from 0 to 4.
c. Area between from 0 to 4.

The last example is the exact same idea as getting profit from MR and MC.

If you want to get distance between two balloons directly from the graphs of their derivatives:
1.Find the area between the derivatives from 0 to the desired time.
2. Whatever deriv. is on top is the balloon going faster (treat that area as positive if that is the balloon you are treating as ahead).

You do: Find the area of the region bounded by the y-axis and

$$
\begin{aligned}
& y=14-2 x \\
& y=2+x
\end{aligned}
$$

If x is in hundreds of items and
$y=M R(x)=14-2 x \quad \$ /$ item.
$y=M C(x)=2+x \quad \$ /$ item.
What does the area you just found represent?
What additional information would you like to know?

